

Lecture 9: Exact Puppe sequence

Definition

A sequence of maps of sets with base points (i.e. in $\underline{\underline{\mathbf{Set}}}_*$)

$$(A, a_0) \stackrel{f}{\rightarrow} (B, b_0) \stackrel{g}{\rightarrow} (C, c_0)$$

is said to be exact at B if im(f) = ker(g) where

$$im(f) = f(A), ker(g) = g^{-1}(c_0).$$

A sequence

$$\cdots \rightarrow A_{n+1} \rightarrow A_n \rightarrow A_{n-1} \rightarrow \cdots$$

is called an exact sequence if it is exact at every A_i .

Example

Let $H \triangleleft G$ be a normal subgroup. There is a short exact sequence

$$1 \to \textit{H} \to \textit{G} \to \textit{G}/\textit{H} \to 1$$

in $\underline{\mathbf{Group}}$. Here we view $\underline{\mathbf{Group}}$ as a subcategory of $\underline{\mathbf{Set}}_*$ where a group is based at its identity element.

Definition

A sequence of maps in $h\mathscr{T}_{\star}$

$$\cdots \to X_{n+1} \to X_n \to X_{n-1} \to \cdots$$

is called exact if for any $Y \in \underline{\mathbf{h}\mathscr{T}_{\star}}$, the following sequence of pointed sets is exact

$$\cdots \rightarrow [Y,X_{n+1}]_0 \rightarrow [Y,X_n]_0 \rightarrow [Y,X_{n-1}]_0 \rightarrow \cdots$$

Definition

Let $f:(X,x_0)\to (Y,y_0)$ be a map in $\underline{\mathscr{T}_{\star}}$. We define its homotopy fiber F_f in $\underline{\mathscr{T}_{\star}}$ by the pull-back diagram

Recall that $p_1 \colon P_{y_0} Y \to Y$ is a fibration, thus

Lemma

 $\pi\colon F_f\to X$ is a fibration.

Note that F_f is precisely the fiber of $P_f \rightarrow Y$ over y_0 :

So this is the same as our definition before. We will put extra emphasize on the role of based point in this section.

Lemma

If $f: X \to Y$ is a fibration, then $f^{-1}(y_0)$ is homotopy equivalent to its homotopy fiber F_f .

For arbitrary map $f: X \rightarrow Y$, we still have a canonical map

$$j: f^{-1}(y_0) \to F_f$$

which may not be a homotopy equivalence. The homotopy fiber can be viewed as a good replacement of fiber in homotopy categry that behaves nicely for fibrations.

Lemma

The sequence

$$F_f \xrightarrow{\pi} X \xrightarrow{f} Y$$

is exact at X in $\underline{\mathbf{h}_{\infty}}$.

Proof: Let y_0 be the base point of Y. We first observe that $f \circ \pi$ factors through $P_{y_0}Y$ which is contractible. Therefore $f \circ \pi$ is null homotopy. Let $Z \in \underline{\mathbf{h}\mathscr{T}_{\star}}$. Consider

$$[Z, F_f]_0 \stackrel{\pi_*}{\rightarrow} [Z, X]_0 \stackrel{f_*}{\rightarrow} [Z, Y]_0.$$

Since $f \circ \pi$ is null homotopic, we have $\operatorname{im} \pi_* \subset \ker f_*$.

Let $g: Z \to X$, $[g]_0 \in \ker f_*$. Assume $f \circ g$ is based homotopic to the trivial map by

$$G: Z \times I \rightarrow Y.$$

Since $G|_{Z\times\{0\}}=y_0$, it can be regarded as a map

$$G: Z \to P_{y_0} Y$$

that fits into the following diagram

Therefore the pair (G,g) factors through F_f . So $[g]_0 \in \operatorname{im} \pi_*$

Notice that the fiber of F_f over x_0 is precisely ΩY

$$\begin{array}{ccc}
X1Y & \longrightarrow F_f \\
\downarrow & & \downarrow \pi \\
X_0 & \longrightarrow X.
\end{array}$$

We find the following sequence of pointed maps

$$\Omega X \xrightarrow{\Omega f} \Omega Y \to F_f \xrightarrow{\pi} X \xrightarrow{f} Y.$$

Lemma

The sequence $\Omega X \xrightarrow{\Omega f} \Omega Y \to F_f \xrightarrow{\pi} X \xrightarrow{f} Y$ is exact in $\underline{\mathbb{h}\mathscr{J}_{\star}}$.

Proof: We will construct the following commutative diagram in $\underline{\mathbf{h}\,\mathcal{T}_{\star}}$ with all vertical arrows homotopy equivalences

$$\Omega X \xrightarrow{\Omega f} \Omega Y \xrightarrow{F_f} \xrightarrow{\pi} X \xrightarrow{f} Y \\
\downarrow \tilde{j}' \qquad \qquad \downarrow j \qquad \qquad \downarrow \qquad \downarrow \\
F_{\pi'} \xrightarrow{\pi''} F_{\pi} \xrightarrow{\pi'} F_{f} \xrightarrow{\pi} X \xrightarrow{f} Y$$

 F_{π} is the homotopy fiber of $\pi: F_f \to X$, given by the pull-back

or explicitly

$${\it F_{\pi}} = \{([\gamma], [\beta]) \in {\it P_{y_0}} \, {\it Y} \times {\it P_{x_0}} {\it X} | {\it f}(\beta(1)) = \gamma(1)\}.$$

Since $F_f \xrightarrow{\pi} X$ is a fibration with fiber ΩY , the map

$$j: \Omega Y \to F_{\pi}, \quad j([\beta]) = ([1_{\mathsf{x}_0}], [\beta])$$

is the natural map of fiber into homotopy fiber which is a homotopy equivalence. This gives the second square.

Similarly, the fiber of the fibration $F_{\pi} \to F_f$ is ΩX . We find

$$j':\Omega X\to F_{\pi'}$$

from fiber to homotopy fiber, which is a homotopy equivalence. Let

$$(-)^{-1}: \Omega X \to \Omega X, \quad \gamma \to \gamma^{-1}$$

be the inverse of the loop. We define

$$\tilde{J} = J \circ (-)^{-1} : \Omega X \to F_{\pi'}.$$

We define the map $k: \Omega X \to F_{\pi}$ by the commutative diagram

Consider the diagram

This diagram is NOT commutative in $\underline{\mathcal{I}_{\star}}$. However, $j \circ \Omega f$ is homotopic to k, so this diagram commutes in $\underline{h}\underline{\mathcal{I}_{\star}}$. To see this, let us explicitly write

$$k([\gamma]) = ([\gamma^{-1}], [1_{y_0}]), \quad (j \circ \Omega f)(\gamma) = ([1_{x_0}], [f(\gamma)]).$$

They are homotopic via

$$F([\gamma],t) = \left([(\gamma\mid_{[t,1]})^{-1}], f[\gamma\mid_{[0,t]}] \right).$$

So the first square commutes in $\mathrm{h}\mathscr{T}_{\star}.$ The lemma follows.

Lemma

Let $X_1 \to X_2 \to X_3$ be exact in $\underline{\mathbb{h}\mathscr{T}_{\star}}$, then so is

$$\Omega X_1 \to \Omega X_2 \to \Omega X_3.$$

Proof.

For any Y, apply $[Y,-]_0$ to the exact sequence $X_1 \to X_2 \to X_3$ and use the fact that Ω is right adjoint to the suspension Σ , i.e.

$$[\Sigma Y, X_i]_0 = [Y, \Omega X_i]_0,$$

we obtain an exact sequence. This implies the lemma.

Theorem (Exact Puppe Sequence)

Let $f: X \to Y$ in $\underline{\mathscr{I}_{\star}}$. Then the following sequence in exact in $\underline{\mathrm{h}\mathscr{I}_{\star}}$

$$\cdots \to \Omega^2 Y \to \Omega F_f \to \Omega X \to \Omega Y \to F_f \to X \to Y.$$

Theorem

Let $p: E \to B$ be a map in $\underline{\mathscr{T}_{\star}}$. Assume p is a fibration whose fiber over the base point is F. Then we have an exact sequence of homotopy groups

$$\cdots \to \pi_n(F) \to \pi_n(E) \to \pi_n(B) \to \pi_{n-1}(F) \to \cdots \to \pi_0(E) \to \pi_0(B).$$

Proof: Since p is a fibration, F is homotopy equivalent to F_p . Observe that

$$[S^0, \Omega^n X]_0 = [\Sigma^n S_0, X]_0 = [S^n, X] = \pi_n(X).$$

The theorem follows by applying $[S^0, -]_0$ to the Puppe Sequence associated to $p: E \to B$.

Example

Consider the universal cover $\exp:\mathbb{R}^1\to S^1.$ The associated long exact sequence implies

$$\pi_n(S^1) = 0, \quad \forall n > 1.$$

Proposition

If i < n, then $\pi_i(S^n) = 0$.

Proof.

Let $f\colon S^i\to S^n$. We need the following fact: any continuous map from a compact smooth manifold X to S^n can be uniformly approximated by a smooth map. Furthermore, two smooth maps are continuously homotopic, then they are smoothly homotopic.

Thus, we can assume that f is homotopic to a smooth map f. Then f is not surjective (for dimension reason). Thus, $f: S^i \to (S^n - \{pt\}) \simeq \mathbb{R}^n \simeq \{pt\}$ is null homotopic.

Example

Consider the Hopf fibration $S^3 \to S^2$ with fiber S^1 . The associated long exact sequence of homotopy groups implies

$$\pi_2(\mathit{S}^2) \simeq \mathbb{Z}, \quad \pi_\mathit{n}(\mathit{S}^3) \simeq \pi_\mathit{n}(\mathit{S}^2) \text{ for } \mathit{n} \geq 3.$$